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Reflection and Transmission of Oblique Plane Waves
at a Plane Interface Between Viscoelastic Media
by

Henry F. Cooper, Jr.

Air Force Weapons Laboratory

Kirtland AFB, New Mexico

ABSTRACT

AD-AOE O 764

The solution is obtained for the reflection and transmission of time
harmonic plane dilatational or shear waves at a plane interface between two

linearly viscoelastic materials. Except in special cases, the reflected and

transmitted waves are general plane waves, i.e., plane waves whose amplitudes

vary across their wave fronts. The angles of reflection and transmission
depend on the incident angle in a more complicated way than in the limiting
elastic case because the wave speeds of the reflected and transmitted waves
are, in general, functions of the incident angle. Necessary and sufficient
conditions for the existence of interface waves are obtained. It is found
that no interface waves can exist for some materials. For another class

of materials, interface waves exist for discrete angles of incidence. For
still other materials, interface waves exist for all incident angles greater

than some critical angle.

NS White Section P
Doc Buff Section %? DISTRIBUTION STATEMENT A
UNANNOUNCED of' Appreved for public releass;

a@g;g%£&>éiii~wﬁiii' Distribution Unlimited
" on Cile |

DISTRIBUTION/AVAILABILITY CODES 3
Bat__AvaiL_and,/or SPECIL]

BDDC |
UL

Actual Date is not available;
use 1966 from References,

N
el
o

S

<:::’
= m
S




INTRODUCTION

This paper treats the reflection and transmission of a time harmonic
plane dilatational or shear wave by a plane interface, y = 0, between two
homogeneous and isotropic linearly viscoelastic materials as indicated by
Figure 1. The method of solution is the same as the procedure used in
solving the elastic problem by use of potential functions except that it
leads to the definition of complex reflection and transmission angles.
Further analysis of the formal solution to obtain the real reflecticm and
transmission angles leads to the definition of general plane waves, i.e.,
plane waves whose amplitudes vary across their wave fronts. This result
is consistent with previous workl dealing with the reflection of plane waves
from plane rigid and free boundaries where such waves were defined initially
so that no complex angles would enter into the analysis. That procedure
could also be applied to the interface problem; however, the method given
here leads more directly to a formal representation of the solution.

The problems treated here and in Reference 1 have been considered by
Lockett2 by using a method which is different than either of the approaches
mentioned ahove., Our results agree in general with his, except that we
present a bit more detailed analysis of the reflection and refraction phenomena
and obtain a few more explicit results. In particular, we obtain necessary
and sufficient conditions for the existence of interface waves and find that,
in general, such waves can exist only for distinct incident angles, a result

which apparently was not recognized from his analysis. We also obtain

S

explicit relationships for the transmitted and reflected wave speeds and

attenuation coefficients.
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As might be expected from the previous work, the phase velocities of
the reflected and transmitted waves are functions of the incident angle
as well as material properties, and the real reriection and transmission
angles depend on the incident angle in a more complicated way than in
the elastic case. Also, as indicated above, interface waves are generally
possible only for discrete incident angles; whereas, in the elastic case
or in a special viscoelastic case, they are possible for a range of
incident angles. In the elastic case this phenomena is referred to as
total reflection or refractiona. In general, a phase shift between
the incident and the reflected or refracted waves is introduced by the
interface.

In Section I, the problem is formulated and, in Section II the
formal solution, for either an incident dilatational or shear wave, is
obtained. An analysis and interpretation of the physical consequences
of the formal solution is presented in Section III. Finally the results

are summarized in Section IV.
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I, FORMULATION

Let 90(5, t) = y(x) exp {-iwt} and tgj(g, t) = 711(5) exp {-iwt} denote
the time harmonic particle displacement vector and stress temnsor where w > 0
is the frequency, t is time, and x = (xr Xy xa) is a position vector in
Cartesian coordinates. Here, the subscripts i, j take on the values 1, 2, 3.
Hereafter, the complex quantities uy and 115 will be referred to as the particle
displacement and stress tensor. The equations of motion, with body forces
neglected, for small amplitude time harmonic waves in a homogeneous and isotropic

linearly viscoelastic material are
uAy + (A + w)V(Y * u) + pw?y = 0 Q)

where A(w) and u(w) are specified complex valued material properties which
reduce to the Lamé constants in the limiting elastic case. The constant
density is denoted by p, and the gradient and Laplace operators are denoted

by V and A. The constitutive relations are

Tyy * ‘613 Vey + u(auilaxj + 3uj/3x1) (2)

where 61 is the Kronecker delta and i, § = 1, 2, 3.

3
We consider two-dimensional motions of the form y = u(x, y, 0) where

X, =X, X, =y, x, =z are the usual Cartesian coordinates. Since u is

independent of z, u, is uncoupled from u, and u, in Eq. 1 and u; satisfies

the z component of Eq. 1. The solutions of this equation describe shear

motions transverse to the x, y plane. They have been previously investigated

for a reatricted class of viscoelastic natcr!nlos and are not considered here.
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Only the "in plane” motions described by the x and y components of Eq. 1 are

studied. Hence, we take u, = 0, u =u and u, = v in Eqs. 1 and 2.

In the following analysis, the subscript m = 1, 2 {s used to indicate whicn
medium the subscripted varisble refers to, i.e., m = 1 implies y > 0 and m = 2
implies y < O, as shown in Fig. 1. The subscript n = 1, 2 is used to denote
dilatational and shear waves respectively, and the subscript L = 1, 2 denotes
the case where a dilatational (£ = 1) or a shear (L = 2) wave is incident at the

interface.

Eight potential functioms, olmn’ are defined such that, for ¢, m = 1, 2,

u, = aolml/ax + aolﬂzlay,

fm

Y ® 30lnl/3y - 301-2/3x, (3)

are the displacement components. The displacement vector obtained from Eq. 3

is a solution of Eq. 1 provided

LU k:m otnm =0, L, m,n=1, 2, (4)

where

k-n H u/S-u;
2 o 2 a
82 =0 ¢+ 2u_)/og; 8:2 Hy/P e (5)

Here, k-n is the "complex wave number" for dilatational (n = 1) or shear (n = 2)

waves in medium m which may be expressed as!




kmn = (w/Cmn)(l + 1 tan nmn), (6)
where
IR 2 2 2
tan Zan = msmanlsmn' 0 s an <« mf2;
(7)
Con © |Smn|sec Q

for m, n = 1, 2, The complex quantities, Smn’ are referred to as 'complex
wave speeds' because of their analogy to the elastic wave speeds. It will be
shown that the real quantities, Cmn’ are least upper bounds for the dilatational
(n = 1) and shear (n = 2) wave speeds in medium m. The requirement that
0 < an < n/2 comes from the condition that plane waves do not grow in amplitude
as they propagatel.

An effort has been made to keep the notation consistant with that in
Ref. 1. However, in order to avoid confusion with the Kronecker delta, Q is
used for the variable defined as § in the previous work. Also, we have

reserved ¢ to denote an angle. Hence, the potential functions are here denoted

by ¢.
The normal stresses in the x and y directions, for medium m and incident :
wave %, are denoted by Yutn and °yLm’ and the corresponding shear stress is
denoted by Tem Thus, from Eqs. 2 and 3, for ¢, m = 1, 2,
- 2 2 2 aw) = 2
- Zu-(a Ol-)/ax + 29 .lm:’dx°y) Am kml .lnx’
2 2 _ 52 ; " 2 ‘
oyl- - Zu'(? Ql-;/ay ? Olmzl)xdy) xm kml olu . (8) :
2 : 2 2 . a2 2
T * u-(23 ol.l/oxay + 9 0ln2/3y F Oznzlax ).
6
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The boundary conditions at the interface, y = O, are, for £ = 1, 2,

u!l(x, 0) = ugz(x, 0), vll(x, 0) = v  (x, 0),
(9)
oyll(x’ 0) = oylz(x, 0), rzl(x, 0) = Tzz(x. 0).
The total potential functions are defined, for ¢, n =1, 2, by
®1n = Stn Yo ¥ Yaind %20 ® Yeon (10)

where 61n is the Kronecker delta. The incident wave, 'l' is a dilatational

wave if £ = 1 and a shear wave if £ = 2, The reflected and refracted waves
are denoted by *lmn’ The potential functions for £, m, n = 1, 2 are assumed J

to be of the form

Y = (11811/”) exp {1k ,(r,°x)} ,

L 12~

(11)

whm 5 (Ilklmnsmnlm) .y (1kmn(rlnn.5)} ' 4

where

r,*1s8in 6, - jcos b, x:= ix + 1y, .

(12)
:1ein g, + jc_ cos ¢ TS
Foon = 2 %80 Son ™ 15 €°% Somm’ m 5

Here, 1, j are unit vectors along the positive x and y axes. The angle, 6 is

ll
\
the angle between the incident dilatational (& = 1) or shear (L = 2) ray r, f

and j. The angles ‘lnn are, in general, complex. If they are real, then they : |

are between r, = and j for m = 1 and between r, and -] for m = 2 @nd are given 1

~n

bY Con = © ). See Fig. 1.

g 0 Wi




+6, Y, -Gllkfl(xl + 2u, sin? 8,) + 6:2"1k§2 sin 202
-dllkfx(xl + 2u, cos? 6,) - 6‘2u1kfz sin 26,
ézlulkfl sin 26, - 6;2"1k¥2 cos 26,
i o
3
. s

It may be shown that Il is the displacement amplitude of the incident
wave, normal to its wavefront, at the origin x = y = 0, Similarly, len Il is
the displacement amplitude of the reflected or refracted wave, normal to its

wavefront, at the origin. Thus, s, M, n =1 2 are the displacement (or

Rlnn
velocity) reflection and refraction coefficients for L = 1, 2,

Note that the incident wave is a plane wave in the usual sense, i.e., it
has constant amplitude across its wavefront. When Clnn is complex, it will be
shown that the reflected or refracted wave is a ''general plane wave'', i.e., it

is attenuated across its wavefront.

From Eqs. 3, 4, 11 and 12 it may be shown that

“l.lnT -Ikml sin Cl.ml il"mz cm o "zmz_ B —l
Vim cmtknl s clml —ikmz si0 c!.mz WlMI
Ixtm| ~ -kil(xm ” Zum sin’ Clml) ‘“mkiz‘m sin 2clmz

oyln -k:l(xm E 2um cos? Clml) uuxkizem i zc!mz w!.mZ

“im -emumkil i zctml -umk:2 o zclmz

S ¢ T )

1(6t1k11 sin 6, - Gzzklz cos 68,)

'1(611kll cos 61 + 612“12 sin 02)
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IT. SOLUTION

The boundary conditions given by Eq. 9 require that all of the

exponentials in Eq. 13 be equal on y = 0, Hence, we obtain the complex

Snell's law, for £, m, n =1, 2,
sin e * snn sin Ollsll .

where the complex wave speeds, Smn. are defined by Eq. 5.

expressions resulting from the boundary conditions and combining the result

with Eq. 14, we obtain the linear set of equations

A R, =B ,2=1,2,

-~

(14)

Rearranging the

COB Sgo9

sin lez

0282281n 2C122

(15)

1 -pzszzcos 26222

where
sin clll cos ‘112 -sin (121
e Sty “sin 8410 cos £42y
At -, Sllcos Cllz °1s,2'1“ 2;112 °2821°°' chzz
2 2 .
ol Sl%sinZCQll olslzcos chlz ozszzsin z;lz
L %, S21
“ 7 - 7 [
-ainel coae2 nlll
cosel sinez Rllz
Pl - olSllcon chlz 5 §2 " -olslzlin 262 ’ !l - thl
2 -
olslzlin 20l ‘ °lslzc°' 202J ‘zzz
L - b, i
9
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(16)
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1f det |51| # 0, then the reflection and refraction coefficients,

lem’ are determined by inverting Eq. 15. In general, len is complex.
Hence, there is a phase shift between the incident wave and the reflected
and refracted waves in general. In order for the formal solution obtained
above to be unique, unique values for c!.mn’ f,m,n = 1,2, must be specified
(since the inversion of Eq. 14 yields multivalued roots for the complex
angles, clmn)' In the following section, the physics of the reflection and
reflection phenomena will be studied, and the information presented there

will allow a unique inversion of Eq. l4.
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IITI. PHYSICAL INTERPRETATION OF THE SOLUTION

Let the complex angle, clmn, be represented by

Clum = almn ¥ 1Bﬂ,mn (18)

where aymn and Blmn real numbers. Combining Eqs. 5, 6, 14, and 18; noting

that sin szn = gin almmcosh Blmn + 1 cos ®pmn sinh Blmn; and equating

the real and imaginary parts of the resulting expression, we obtain

sin &, cosh Bzmm (e rlmn EOR Oy , (19)

cos a, sinh Blmn = Fzmn sin Almm (20)
where

omm = Ygmn €98 O /cos 21p 2 0, (21)

Youn = Com 810 8, /C,, 2 O, (22)

Byun = %1y = Oun * (23)

Combining Eqs. 19 and 20 and using simple identities, we obtain

2
2 2 P
sinh Blmn + 8in @y mn tmn , (24)
2 2 r g 25
cosh Blmn - W g (25)
sin apmn coohsuIm sin Almn = cos czmn81nh Blmncoe Almn . (26)

11




Combining Eq. 24 with the square of Eq. 26 and noting that

cosh?B - sinhzszmn = ], we obtain a quadratic in sinhzﬂmn whose

fmn

solution for sinh?g >0 is

2mn

2 <X jrz  _ o s - 2 ]
sinh?8, 2{ 2 -1+ [(1 r,. )%+ 4T, sin Azm] } .

Note that % omn is real if and only if Bzmn = 0 in Eq. 18. Thus, from

Eq. 27, necessary and sufficient conditions for Comn to be a real, non-

zero angle are Almn =0 and 0 < kan < 1. In this case, clmn g ezmn is
given by Eq. 14 or Eq. 19. Note that rzmn =0 (ela 0) is a sufficient

condition for Blmn = 0, and in this case a = 0 from Eq. 19. Hence,

f£mn
if the incident wave is normal to the interface, all reflected and
refracted waves propagate in directions normal to the interface.

If Blmn # 0, then the proper sign for sinh Blmn = |sinh Blmnl given
by Eq. 27 must be determined before the solution is complete. Since

rlmn 2 0, Eq. 19 indicates that (note that 0 < an < n/2, so-n/2 < Azmn< n/2)

G, . 5N (28)

Eq. 20 then indicates only that cos apmn and Blmn either have the same 2
or the opposite sign depending on the sign of Almn' Thus, the form of
the information presented so far is not sufficieat to determine the proper

sign for Blmn' We shall obtain the necessary information by considering

the real properties of the reflection phenomena.




Combining Eqs. 11, 12, and 18 and simplifying, we obtain

ikmnrlmn o (1w/c£mn) ( P omn * Dlmnglmn) i
where
Coun - “an “2an i (30)
2 2 -
T [1 + sinh? B, sec nm] : (31)
Pogn = 1 8in 6, + je  cos O er ¥ (32)
a { sin (ulmn + nlmn) + !cmCOS(almn + nlmn) i (33)
Ot ¥ Ytam = Ppan 3 (34)
tan ¢, == tan an tanh 8, , -n/2 < Yion £ /2 , (35)
tan L cot an tanh Bzmn y =1/2 < n = n/2, (36)
= 2 2 2 lf
Dot * S [tan ancosh Bomg * S1nb Blmn] . (37)

In Eq. 29, czmn is the real wave speed, E and elmn are real unit

Lmn

vectors" in the directions of propagation and damping, and D is the

fmn
total damping coefficient. From Eq. 30, Elmn is the ratio of the wave

speed to the material property cmn given by Eq. 7, and from Eq. 31

0 < clnn < 1. Hence, the material properties Cnn are least upper bounds

13




on the wave speeds. Note, from Eq. 31, that Elmn = 1 {f and only

if Blmn = 0. Thus, a necessary and sufficient condition for waves

to propagate with speeds specified entirely by material properties,

i.e. independent of the incident angle, is for % gmn—tobe real. Note
that this is always the case at normal incidence since Clmn = 0 in that
case.

The propagation and damping unit vectors, Pomn and a,m are represented
schematically in Figure 2 for m = 1. Note that they coincide if and
only 1if °zmm el "0 which occurs if and only 1if Blmn = 0. Thus,

a necessary and sufficient condition for the surfaces of constant phase,

P *Xx = constant, and surfaces of constant amplitude, a . X = constant,
-~ imn s =

Lmn

to be parallel is for ;zmn to be real. Otherwise, the waves are attenuated

in directions other than the direction of propagation.

The real reflection or refraction angle, 6 , will now be

Lmn
determined. Combining Eqs. 34, 35, and 31 to obtain an expression for

sin elmn , and then comparing the result with the sum of Eq. 19 and

tan 2 times Eq. 23, we find
mn

oin 0, = &, Vogn 2 0. (38)

This result, which explicitly determines the reflection and refraction
angles once szn is found from Eqs. 31 and 27, is precisely the same
form obtained for the reflection of plane waves from free and rigid

boundaric.l. Note that 0 < £ 1 since the analysis has required

zlnn Yean
that etnn be real.
14
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The attenuation vector, a , may be decomposed into components

f£mn

along and normal to Pomn by noting that a m "™ (gzmn . Elmn) Pyue +
(?zmn . ?lmn) tomn where Conn ™ g X Ponn and k 1s a unit vector in the

x3 = z direction. Hence, the unit vector tangent to the reflected
or refracted wave front, positive when pointing away from the interface,

is

t = —; cos 6

€ omn + !em sin elmn s (39)

fmn
Hence, Eq. 29 may be transformed to
~ 2
ikmn(gzmn . X) (iulclmn) [(1 + 1 Elmn taann) (Ezmn . %)

—1r2 2
1y . sec nmn sinh Bzmn°°°h Blmn (Elmn . f)] (40)

Hence, the longitudional damping coefficient (in the direction

of ?zmn) is
i
dyon = W/C ) £, tan 2, (41)
and the transverse damping coefficient (in the direction of Ezmn) is
2 - 2
Toan = (w/Cmn) €omn %8¢ Fpp sinh 5zmn cosh Bzmn . (42)

Thus, the wave is transversely damped away from the interface if Bzmn< 0
and toward the interface if Bzmn > 0. Note also that szn = 0 if and
only 1if Btmn = 0, Thus, the significance of the sign of sinh Blnn now

becomes clearer.

15




Multiplying Eq. 19 by tan nmn' adding the result to Eq. 20,

simplifying and noting Eqs. 34, 35, 38, 31 and 42, we obtain

(62 tan @ -tanQ J=¢C T cos 0 (43)
imn mn 1

”ylmn L mn  2mn mn

We note that Eq. 43 is consistent with the previous findings on necessary

and sufficient conditions for Blmn = 0 (and, therefore, T = 0) in that

fmn
those conditions are included in the set of conditions for which the left

< n/2. Thus

side of Eq. 43 vanishes. From the physical situation, |ezmn| <

Eq. 28 indicates that 0 < 6 < m/2 so that cos elmn is non-negative.

fmn
Hence, the signsof T!.mn and Blmn # 0 are determined by the left side of

Eq. 43 provided both sides are not identically zero. Excluding, for the

moment, interface waves (elmn = 7/2) and the case of no transverse damping,
- = - 2 - .
sign szn sign ( Bzmn) sign (cmn tan ﬂmn tan “11)'

if B 0, elmn ¥ n/2. (44)

mn

Note that if le > Qo then T, < 0 since Coum = 1 and the reflected

or transmitted wave is transversely damped toward the interface.
g
We now determine necessary and sufficient conditions for interface

waves to exist, i.e., 0O = n/2. To facilitate the argument, we consider

f£mn

three cases: a) nmn ¢ “12' b) nmn - “1; $0,andc) 0 =Q

e =% = 5.

1f nmn ¢ 011, then from Eq. 28 Bzmn ¢ 0. Furthermore, we have

already shown only normally reflected and transmitted waves exist

if Yiag * 0 (normal incidence). Hence, from Eq. 43, a necessary and

16 EAE

b }‘-\O.
;.&..-.;
gy
g

Lﬁ-“...’-"..-.--- r.ﬁqgg,hz e , ,

- ) " %. '!}‘Ef{ A AT L




Lo

sufficient condition for 6 = n/2 (if 8 # Q ) is
fmn 11 Y i

£ tan Q= tan R . (45)
fmn mn 1g,

Note that this condition can not be satisfied it either “mn = 0 or

Q,p = 0, or {f le > an (since £ < 1). Thus, no interface wave can exist

in these cases. Hence, 1f @ # 0 and Q;l ¥ 0, and if “mn # sz’ then from
Eq. 38, an interface wave exists if and only if

2 -

“yun = a0 9 /tan QL a8, F4,. (46)

Note that i1f an interface wave occurs, then it occurs for a discrete incident
angle ﬁlw
If an = le ¢ 0, then Aﬁmn = 0 and we have previously fognd that

B

= 0 1f and only if rlmn < 1l. (See Eq. 28.) Thus, from Eq. 31,

2mn t YR.mn

Elmn = 1 in this case. Hence, from Eq. 38, an interface wave is possible

if and only {if Yien 2 1. In fact, from Eqs. 43 and 38, a necessary and

sufficient condition for e!mn = n/2 (if QEP - le # 0) is

Ykmn = A (&7)

To make this clear, note that the left side of Eq. 43, in this case reduces

pe gl -
€0 ¥imn (1 Elmn) tan nmn, which can vanish if and only if elmn 1. Thus,

from Eq. 38, o = n/2 1f and only if Y ™ 1. Note that this implies

f£mn
that an interface wave can exist for only a distinct incident angle.
If n_n = nll = 0, then Blmn 40 1f Yoen " 1 as in the previous case.

Further, the left side of Eq. 43 is identically zero. Thus, 1if 8 an #0,

17




then elmn = w/2. Note that Ezmn = 1 for L PR 1. Thus, from Eq. 38,

] < n/2 for Yo 1, and ezmn = n/2 if Vi ™ 1. Hence, 6 = n/2

£mn Lmn

for Yous 2 1. For the reciprocal argument, note that if elmn = n/2, then

from eq. 38, Ezmn PR 1. Then since 0 < Clmn < 1, it is clear that

mn

L > 1. Thus, a necessary and sufficient condition for em[l = xf2

(£ 0, =9, =0) is
Toe * Be (48)

This implies that an interface wave exists for any incident angle such that

sin e2 > clg/cmn°

It remains to specify the proper sign for Tlmn and Blmn when elmn-"lz'

In all cases where interface waves exist, we choose

T 20, 8 T n/2, (49)

<0 for 6
fmn o

Lmn

so that the solution is bounded for increasing y. This choice also provides
consistency with the limiting elastic case. Note that if ﬂmn =Q,0¢40,

then from Eqs. 47 and 28, Blmn =0,




IV. DISCUSSION

From the preceding analysis, we can make several general observations
about the reflection and transmission phenomena at the interface. In general,
the reflected and transmitted waves are general plane waves (both longitudinal
and transverse damping) whose wave speeds and attenuation coefficients are
functions of the incident angle as well as material properties. The least
upper bound for the wave speed is the material property Cnm where m, n = 1,2,
In general, interface waves exist for distinct angles of incidence if they
are possible at all. In general, there is a phase shift between the incident
and reflected or transmitted wave.

The exceptions to the above general statements center around special
cases for the complex wave speeds smn' If Imsmn = Imsll' then the reflected

or transmitted wave, ¢ , 18 a plane wave in the usual sense (constant

2mn
amplitude across the wave front) unless it is an interface wave, in which
case it becomes a general plane wave. If Imsmn = ImSll ¥ 0, an interface
wave can exist only for distinct incident angles; but 1if Imsmn = Imsll- o,
then interface waves exist for any incident angle greater than some critical
angle. Also, the only case where the wave speed is independent of the
incident angle is when Ins||In - Imsll.

Another special case of some interest is In this case,

no interface wave is possible. Also, it was shown that the reflected or
transmitted wave is attenuated across its front toward the interface in

this case. This result is contrary to the elastic case of internal reflection

19
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where the wave is attenuated away from the interface. For the reflected
2
waves (m = 1), Lockett has suggested that when the incident wave is a

shear wave n‘l > 01 for most real materials. The transmitted wave

n
properties cannot be compared without specifying specific materials.
Hence, no such relationship between Q), and 2, 1is generally applicable.

The results presented here are entirely consistent with those for
rigid and free boundaries in Reference 1. In generalities, these results
also agree with Lockett's resultsz. However, there is at least one point
where an inconsistency occurs. Lockett indicates that if interface waves
exist, they occur for incident angles greater than some critical angle.

It was shown here that, except for the above mentioned special cases,
interface waves occur for discrete incident angles, i.e., the reflected or
transmitted ray moves away from the interface if the incident angle 1is
increased beyond the critical angle.

The solution presented here includes all cases of homogeneous and
isotropic linearly viscoelastic materials including the limiting elastic
case. Once the complex angles Clmn are determined, the results from
Section II can be applied to determine the field for a fixed frequency w.
If pulse propagation is of interest, then a Fourier synthesis may be used

to solve the transient problem.

20
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